Oxford Sigma Technologies

The fusion industry has been gaining momentum and this decade should yield milestone results to demonstrate fusion energy as a real source of energy. However, fusion energy environmental conditions that will be experienced by the structural and functional materials are extreme and the ability to withstand these conditions are still unsolved.

Oxford Sigma develops enabling materials technologies for fusion energy in order to accelerate the deployment of this carbon-free energy source.

The company is focused on key materials and their applications in the following topics (click to find out more):

Liquid metal Compatible Materials

For fusion energy to become a commercially successful energy source, key components needs to be demonstrated. Liquid metal breeder blanket technology is one of the key enabling technologies.

Oxford Sigma is on a path to commercialise liquid lithium corrosion resistant materials for breeder blankets for fusion energy. To discover how this technology will be beneficial to you and your organisation, please read the following press releases and contact us.

Protection from Dissolution

The materials that Oxford Sigma are developing aim to protect against dissolution from the corrosive liquid metal flowing environment that is experienced in novel fusion designs.


Resistance to Radiation Damage

Our material microstructure is tailored to provide superior radiation resistance against neutron damage. The neutrons emitted by the fusion reaction can cause significant structural damage to common nuclear materials.

High Temperature Operation

Our company develops liquid metal resistant materials for high temperature operations in breeder blankets. This is to maximise thermodynamic efficiency in electrical power production.

Plasma-Facing Components

Plasma-Facing Components are exposed to the most extreme conditions known to humankind, these include intense radiation damage, temperatures greater than ~1000 °C, and fusion plasma erosion.

Oxford Sigma has patent pending technology in tungsten-based materials for plasma-facing components in fusion reactors. To discover how this technology will be beneficial to you and your organisation, please  contact us.

Increases reactor availability

Our plasma-facing component technology aims to enable greater reactor availability by extending the operational lifetime of the components compared to the standard fusion monoblock design.

Reduces radioactive waste

Our technology works to reduce the radiological half-life and radiotoxicity burden compared to standard materials during and after commercial operation.

Enhances safety

Our technology enhances safety margins due to the innovative solutions in the materials science and alloy design.

Materials for Extreme Environments​

Fusion Breeder Blankets

The economic success and sustainability of fusion energy is dependent on the tritium breeder blanket devices generating fuel to the levels required to maintain the fusion reaction.

Oxford Sigma has patent pending technologies in liquid metal breeder blankets materials and designs. To discover how these technologies will be beneficial to you and your organisation, please contact us.

The image is the microstructure of Oxide Dispersion Strengthened steel, a radiation-resistant alloy used in our designs.

Protection from corrosion

Our corrosion-resistant material design aims to provide genuine solutions to liquid-metal breeder materials challenges. Liquid lead-lithium coolant is another candidate for use as tritium breeders and heat extractors but are highly corrosive, which can be life-limiting to the component.

Resistance to Radiation Damage

Our technology’s material microstructure is tailored to provide superior radiation resistance against neutron damage. The neutrons emitted by the fusion reaction can cause significant structural damage to common nuclear materials.

Regulatory Compliance

Our company’s expertise in nuclear regulation and compliance enables us to develop, design, and plan the regulatory scrutiny that our technology will need to overcome.


Oxford Sigma has developed a multiphysics dynamic optimiser software to provide an easy-to-use and powerful tool for simulating nuclear fission kinetics, fusion reactors, and radioactive inventories. 

Details about the software platform can be found below. For interest in using this tool for your projects, please email us.


Physics Capability

NeutronicBEAST is a software platform that interfaces with industry standard neutronic and inventory code bases. The capabilities include CAD inputs, workflow optimisation, and Monte Carlo based simulations.

Fast Prototyping

The multiphysics dynamic optimiser tool has been designed from the ground up to enable fast prototyping of nuclear technologies, such as breeder blanket designs, plasma-facing components, and shielding for fusion and fission reactor cores.

Materials Database

Our software platform has an extensive nuclear materials database, which includes standard fission materials, fusion materials, and novel materials. For example, the database includes many of the novel materials such as advanced steels, vanadium alloys, metal hydrides, and high temperature superconductors.

Research Collaborations

Oxford Sigma is actively engaged in research collaborations with universities and national laboratories on developing new materials solutions for fusion energy. Some of the collaborators are found below.

For more information on Oxford Sigma’s projects, software tools, research collaborations, or if you would like to collaborate with us on a project, please contact us via email at [email protected].